Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 13.859
Filtrar
1.
Adv Sci (Weinh) ; 11(13): e2308166, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38247197

RESUMO

Tumor-associated thrombus (TAT) accounts for a high proportion of venous thromboembolism. Traditional thrombolysis and anticoagulation methods are not effective due to various complications and contraindications, which can easily lead to patients dying from TAT rather than the tumor itself. These clinical issues demonstrate the need to research diverse pathways for adjuvant thrombolysis in antitumor therapy. Previously, the phenotypic and functional transformation of monocytes/macrophages is widely reported to be involved in intratribal collagen regulation. This study finds that myeloid deficiency of the oncogene SHP2 sensitizes Ly6Clow monocyte/macrophage differentiation and can alleviate thrombus organization by increasing thrombolytic Matrix metalloproteinase (MMP) 2/9 activities. Moreover, pharmacologic inhibition by SHP099, examined in mouse lung metastatic tumor models, reduces tumor and thrombi burden in tumor metastatic lung tissues. Furthermore, SHP099 increases intrathrombus Ly6Clow monocyte/macrophage infiltration and exhibits thrombolytic function at high concentrations. To improve the thrombolytic effect of SHP099, NanoSHP099 is constructed to achieve the specific delivery of SHP099. NanoSHP099 is identified to be simultaneously enriched in tumor and thrombus foci, exerting dual tumor-suppression and thrombolysis effects. NanoSHP099 presents a superior thrombus dissolution effect than that of the same dosage of SHP099 because of the higher Ly6Clow monocyte/macrophage proportion and MMP2/MMP9 collagenolytic activities in organized thrombi.


Assuntos
Monócitos , Trombose , Animais , Camundongos , Leucócitos , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Monócitos/efeitos dos fármacos , Terapia Trombolítica/métodos , Trombose/metabolismo , Piperidinas/farmacologia , Pirimidinas/farmacologia , Proteína Tirosina Fosfatase não Receptora Tipo 11/antagonistas & inibidores
2.
Nature ; 625(7993): 166-174, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38057662

RESUMO

Myeloid cells are known to suppress antitumour immunity1. However, the molecular drivers of immunosuppressive myeloid cell states are not well defined. Here we used single-cell RNA sequencing of human and mouse non-small cell lung cancer (NSCLC) lesions, and found that in both species the type 2 cytokine interleukin-4 (IL-4) was predicted to be the primary driver of the tumour-infiltrating monocyte-derived macrophage phenotype. Using a panel of conditional knockout mice, we found that only deletion of the IL-4 receptor IL-4Rα in early myeloid progenitors in bone marrow reduced tumour burden, whereas deletion of IL-4Rα in downstream mature myeloid cells had no effect. Mechanistically, IL-4 derived from bone marrow basophils and eosinophils acted on granulocyte-monocyte progenitors to transcriptionally programme the development of immunosuppressive tumour-promoting myeloid cells. Consequentially, depletion of basophils profoundly reduced tumour burden and normalized myelopoiesis. We subsequently initiated a clinical trial of the IL-4Rα blocking antibody dupilumab2-5 given in conjunction with PD-1/PD-L1 checkpoint blockade in patients with relapsed or refractory NSCLC who had progressed on PD-1/PD-L1 blockade alone (ClinicalTrials.gov identifier NCT05013450 ). Dupilumab supplementation reduced circulating monocytes, expanded tumour-infiltrating CD8 T cells, and in one out of six patients, drove a near-complete clinical response two months after treatment. Our study defines a central role for IL-4 in controlling immunosuppressive myelopoiesis in cancer, identifies a novel combination therapy for immune checkpoint blockade in humans, and highlights cancer as a systemic malady that requires therapeutic strategies beyond the primary disease site.


Assuntos
Medula Óssea , Carcinogênese , Interleucina-4 , Mielopoese , Transdução de Sinais , Animais , Humanos , Camundongos , Antígeno B7-H1/antagonistas & inibidores , Antígeno B7-H1/metabolismo , Medula Óssea/efeitos dos fármacos , Medula Óssea/metabolismo , Carcinogênese/efeitos dos fármacos , Carcinogênese/metabolismo , Carcinogênese/patologia , Carcinoma Pulmonar de Células não Pequenas/imunologia , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Carcinoma Pulmonar de Células não Pequenas/patologia , Carcinoma Pulmonar de Células não Pequenas/terapia , Linfócitos T CD8-Positivos/efeitos dos fármacos , Linfócitos T CD8-Positivos/imunologia , Inibidores de Checkpoint Imunológico/imunologia , Inibidores de Checkpoint Imunológico/farmacologia , Inibidores de Checkpoint Imunológico/uso terapêutico , Interleucina-4/metabolismo , Neoplasias Pulmonares/imunologia , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/terapia , Linfócitos do Interstício Tumoral/efeitos dos fármacos , Linfócitos do Interstício Tumoral/imunologia , Monócitos/efeitos dos fármacos , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Receptor de Morte Celular Programada 1/metabolismo , Recidiva , Transdução de Sinais/efeitos dos fármacos
3.
Nanomedicine ; 55: 102719, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37977510

RESUMO

Chronic inflammatory diseases are increasing in developed societies, thus new anti-inflammatory approaches are needed in the clinic. Synthetic peptides complexes can be designed to mimic the activity of anti-inflammatory mediators, in order to alleviate inflammation. Here, we evaluated the anti-inflammatory efficacy of tethered peptides mimicking the interleukin-1 receptor antagonist (IL-1Ra) and the heat-shock protein 70 (HSP70). We tested their biocompatibility and anti-inflammatory activity in vitro in primary human monocytes and differentiated macrophages activated with two different stimuli: the TLR agonists (LPS + IFN-γ) or Pam3CSK4. Our results demonstrate that IL-1Ra and HSP70 synthetic peptides present a satisfactory biocompatible profile and significantly inhibit the secretion of several pro-inflammatory cytokines (IL-6, IL-8, IL-1ß and TNFα). We further confirmed their anti-inflammatory activity when peptides were coated on a biocompatible material commonly employed in surgical implants. Overall, our findings support the potential use of IL-1Ra and HSP70 synthetic peptides for the treatment of inflammatory conditions.


Assuntos
Anti-Inflamatórios , Proteína Antagonista do Receptor de Interleucina 1 , Humanos , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Proteína Antagonista do Receptor de Interleucina 1/farmacologia , Proteína Antagonista do Receptor de Interleucina 1/uso terapêutico , Lipopolissacarídeos/farmacologia , Macrófagos/efeitos dos fármacos , Monócitos/efeitos dos fármacos , Peptídeos/farmacologia , Peptídeos/uso terapêutico
4.
Int Immunopharmacol ; 121: 110482, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37364330

RESUMO

Salbutamol, which consists of an R-isomer and S-isomer, is an effective and widely used ß2 adrenoreceptor agonist that may possess anti-inflammatory properties in addition to its bronchodilator activity. Whether the salbutamol R-isomer has advantages over its racemic mixture and effectiveness in treating endotoxemia and endotoxin-induced lung injury has not been well studied. In this study, we investigated the preventive and therapeutic effects of R-salbutamol (R-sal), S-salbutamol (S-sal), and their racemic mixture (Rac-sal) on a mouse model of lipopolysaccharide (LPS)-induced endotoxemia. Dexamethasone (Dex) was used for comparison. The results showed that R-sal markedly improved the 7-day survival rate of endotoxic mice when administered before and after LPS treatment. Dex was toxic and accelerated the death of endotoxic mice when administered before LPS injection. Histological examination of the lungs revealed that the LPS challenge resulted in acute lung damage, including inflammatory cell infiltration, thickened alveolar septa, and congestion. R-sal pre-treatment effectively inhibited these changes, accompanied by markedly reduced lung myeloperoxidase levels, serum cytokine levels, and lactate release, significant restoration of lymphocyte count, and reduction of monocyte count. This may have occurred through inhibition of M1 macrophage inflammatory responses by enhancement of ß-arrestin2 expression and suppression of NF-κB activation. Rac-sal exhibited diminished effects compared to that of R-sal, while S-sal showed enhanced release of some inflammatory cytokines. In addition, R-sal pre-treatment showed a better improvement in prognostic pulmonary function on day 4 compared to that by Rac-sal. Collectively, our results indicate the potential benefits of R-sal in regulating inflammatory responses to endotoxemia and endotoxin-induced lung injury.


Assuntos
Lesão Pulmonar Aguda , Agonistas de Receptores Adrenérgicos beta 2 , Albuterol , Endotoxemia , Animais , Camundongos , Albuterol/administração & dosagem , Agonistas de Receptores Adrenérgicos beta 2/administração & dosagem , Camundongos Endogâmicos BALB C , Endotoxemia/tratamento farmacológico , Lipopolissacarídeos , Linfócitos/efeitos dos fármacos , Linfócitos/metabolismo , Monócitos/efeitos dos fármacos , Monócitos/metabolismo , Ácido Láctico/sangue , Inflamação/tratamento farmacológico , Lesão Pulmonar Aguda/tratamento farmacológico , Lesão Pulmonar Aguda/mortalidade , beta-Arrestina 2/metabolismo , NF-kappa B/metabolismo
5.
Clin Transl Med ; 13(4): e1233, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-37029786

RESUMO

BACKGROUND: Closing mucosal defects to reach mucosal healing is an important goal of therapy in inflammatory bowel disease (IBD). Among other cells, monocyte-derived macrophages are centrally involved in such intestinal wound healing. We had previously demonstrated that the anti-α4ß7 integrin antibody vedolizumab blocks the recruitment of non-classical monocytes as biased progenitors of wound healing macrophages to the gut and delays wound healing. However, although important for the interpretation of disappointing results in recent phase III trials in IBD, the effects of the anti-ß7 antibody etrolizumab on wound healing are unclear so far. METHODS: We analyzed the expression of etrolizumab targets on human and mouse monocyte subsets by flow cytometry and assessed their function in adhesion and homing assays. We explored wound-associated monocyte recruitment dynamics with multi-photon microscopy and compared the effects of etrolizumab and vedolizumab surrogate (-s) antibodies on experimental wound healing and wound-associated macrophage abundance. Finally, we investigated wound healing macrophage signatures in the large intestinal transcriptome of patients with Crohn's disease treated with etrolizumab. RESULTS: Human and mouse non-classical monocytes expressed more αEß7 integrin than classical monocytes and were a target of etrolizumab-s, which blocked non-classical monocyte adhesion to MAdCAM-1 and E-Cadherin as well as gut homing in vivo. Intestinal wound healing was delayed on treatment with etrolizumab-s along with a reduction of peri-lesional wound healing macrophages. Wound healing macrophage signatures in the colon of patients with Crohn's disease were substantially down-regulated on treatment with etrolizumab, but not with placebo. CONCLUSIONS: Combined blockade of αEß7 and α4ß7 with etrolizumab seems to exceed the effect of anti-α4ß7 treatment on intestinal wound healing, which might help to inform further investigations to understand the recent observations in the etrolizumab phase III trial program.


Assuntos
Fármacos Gastrointestinais , Doenças Inflamatórias Intestinais , Integrinas , Macrófagos , Cicatrização , Animais , Humanos , Camundongos , Doença de Crohn/tratamento farmacológico , Doença de Crohn/imunologia , Doença de Crohn/patologia , Fármacos Gastrointestinais/imunologia , Fármacos Gastrointestinais/farmacologia , Fármacos Gastrointestinais/uso terapêutico , Doenças Inflamatórias Intestinais/tratamento farmacológico , Doenças Inflamatórias Intestinais/imunologia , Doenças Inflamatórias Intestinais/patologia , Integrinas/antagonistas & inibidores , Integrinas/imunologia , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Macrófagos/patologia , Monócitos/efeitos dos fármacos , Monócitos/imunologia , Monócitos/patologia , Cicatrização/efeitos dos fármacos , Cicatrização/imunologia
6.
Small ; 19(11): e2205429, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36638251

RESUMO

Fluorescent nanodiamonds (FNDs) with negative nitrogen-vacancy (NV- ) defect centers are great probes for biosensing applications, with potential to act as biomarkers for cell differentiation. To explore this concept, uptake of FNDs (≈120 nm) by THP-1 monocytes and monocyte-derived M0-macrophages is studied. The time course analysis of FND uptake by monocytes confirms differing FND-cell interactions and a positive time-dependence. No effect on cell viability, proliferation, and differentiation potential into macrophages is observed, while cells saturated with FNDs, unload the FNDs completely by 25 cell divisions and subsequently take up a second dose effectively. FND uptake variations by THP-1 cells at early exposure-times indicate differing phagocytic capability. The cell fraction that exhibits relatively enhanced FND uptake is associated to a macrophage phenotype which derives from spontaneous monocyte differentiation. In accordance, chemical-differentiation of the THP-1 cells into M0-macrophages triggers increased and homogeneous FND uptake, depleting the fraction of cells that were non-responsive to FNDs. These observations imply that FND uptake allows for distinction between the two cell subtypes based on phagocytic capacity. Overall, FNDs demonstrate effective cell labeling of monocytes and macrophages, and are promising candidates for sensing biological processes that involve cell differentiation.


Assuntos
Técnicas Biossensoriais , Corantes Fluorescentes , Macrófagos , Monócitos , Nanodiamantes , Fagocitose , Nanodiamantes/química , Nanodiamantes/toxicidade , Nitrogênio/química , Corantes Fluorescentes/química , Corantes Fluorescentes/toxicidade , Humanos , Linhagem Celular , Monócitos/citologia , Monócitos/efeitos dos fármacos , Monócitos/fisiologia , Macrófagos/citologia , Macrófagos/efeitos dos fármacos , Macrófagos/fisiologia , Sobrevivência Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Fagocitose/efeitos dos fármacos
7.
J Neuroinflammation ; 19(1): 229, 2022 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-36115971

RESUMO

BACKGROUND: Dysfunctional humoral and cellular innate immunity are key components in the development and progression of age-related macular degeneration (AMD). Specifically, chronically activated microglia and their disturbed regulatory system contribute to retinal degeneration. Galectin-3, a ß-galactose binding protein, is a potent driver of macrophage and microglia activation and has been implicated in neuroinflammation, including neurodegenerative diseases of the brain. Here, we hypothesized that genetic deficiency of galectin-3 or its modulation via TD139 dampens mononuclear phagocyte reactivity and delays retinal degeneration. METHODS: Galectin-3 expression in AMD patients was analyzed by immunohistochemical stainings. Galectin-3 knockout and BALB/cJ mice were exposed to white bright light with an intensity of 15,000 lux for 1 h and Cx3cr1GFP/+ mice to focal blue light of 50,000 lux for 10 min. BALB/cJ and Cx3cr1GFP/+ mice received intraperitoneal injections of 15 mg/kg TD139 or vehicle for five consecutive days, starting one day prior to light exposure. The effects of galectin-3 deficiency or inhibition on microglia were analyzed by immunohistochemical stainings and in situ hybridization of retinal sections and flat mounts. Pro-inflammatory cytokine levels in the retina and retinal pigment epithelium (RPE) were quantified by qRT-PCR and transcriptomic changes were analyzed by RNA-sequencing. Retinal thickness and structure were evaluated by optical coherence tomography. RESULTS: We found that galectin-3 expression was strongly upregulated in reactive retinal mononuclear phagocytes of AMD patients and in the two related mouse models of light-induced retinal degeneration. The experimental in vivo data further showed that specific targeting of galectin-3 by genetic knockout or administration of the small-molecule inhibitor TD139 reduced microglia reactivity and delayed retinal damage in both light damage conditions. CONCLUSION: This study defines galectin-3 as a potent driver of retinal degeneration and highlights the protein as a drug target for ocular immunomodulatory therapies.


Assuntos
Galectina 3 , Degeneração Macular , Microglia , Animais , Citocinas/metabolismo , Galectina 3/antagonistas & inibidores , Galectina 3/genética , Galectina 3/metabolismo , Humanos , Degeneração Macular/genética , Degeneração Macular/metabolismo , Degeneração Macular/prevenção & controle , Camundongos , Microglia/metabolismo , Monócitos/efeitos dos fármacos , Monócitos/metabolismo , RNA/metabolismo , Retina/efeitos dos fármacos , Retina/metabolismo , Degeneração Retiniana/genética , Degeneração Retiniana/metabolismo , Degeneração Retiniana/prevenção & controle , Tiogalactosídeos/farmacologia , Triazóis/farmacologia
8.
Acta Trop ; 232: 106497, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35508271

RESUMO

Chikungunya virus (CHIKV) is a zoonotic arthropod-borne virus that causes Chikungunya fever (CHIKF), a self-limiting disease characterized by myalgia and acute or chronic arthralgia. CHIKF pathogenesis has an important immunological component since higher levels of pro-inflammatory factors, including cytokines and chemokines, are detected in CHIKV-infected patients. In vitro studies, using monocytes and macrophages have shown that CHIKV infection promotes elevated production of pro-inflammatory cytokines and antiviral response factors. Vitamin D3 (VD3) has been described as an important modulator of immune response and as an antiviral factor for several viruses. Here, we aimed to study the effects of VD3 treatment on viral replication and pro-inflammatory response in CHIKV-infected human monocytes (VD3-Mon) and monocyte-derived macrophages differentiated in the absence (MDMs) or the presence of VD3 (VD3-MDMs). We found that VD3 treatment did not suppress CHIKV replication in either VD3-Mon or VD3-MDMs. However, the expression of VDR, CAMP and CYP24A1 mRNAs was altered by CHIKV infection. Furthermore, VD3 treatment alters TLRs mRNA expression and production of pro-inflammatory cytokines, including TNFα and CXCL8/IL8, but not IL1ß and IL6, in response to CHIKV infection in both VD3-Mon and VD3-MDMs. While a significant decrease in CXCL8/IL8 production was observed in CHIKV-infected VD3-Mon, significantly higher production of CXCL8/IL8 was observed in CHIKV-infected VD3-MDM at 24 hpi. Altogether, our results suggest that vitamin D3 may play an important role in ameliorating pro-inflammatory response during CHIKV infection in human Mon, but not in MDMs. Although further studies are needed to evaluate the efficacy of VD3; nevertheless, this study provides novel insights into its benefits in modulating the inflammatory response elicited by CHIKV infection in humans.


Assuntos
Febre de Chikungunya , Vírus Chikungunya , Macrófagos , Monócitos , Receptores Toll-Like , Replicação Viral , Febre de Chikungunya/virologia , Vírus Chikungunya/efeitos dos fármacos , Colecalciferol/farmacologia , Citocinas/biossíntese , Humanos , Macrófagos/efeitos dos fármacos , Macrófagos/virologia , Monócitos/efeitos dos fármacos , Monócitos/virologia , Receptores Toll-Like/biossíntese , Replicação Viral/efeitos dos fármacos , Vitamina D/farmacologia
9.
Innate Immun ; 28(3-4): 122-129, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35612375

RESUMO

Monocytes and macrophages that originate from common myeloid progenitors perform various crucial roles in the innate immune system. Stimulation with LPS combined with TLR4 drives the production of pro-inflammatory cytokines through MAPKs and NF-κB pathway in different cells. However, the difference in LPS susceptibility between monocytes and macrophages is poorly understood. In this study, we found that pro-inflammatory cytokines-IL-1ß, IL-6 and TNFα showed greater induction in phorbol-12-myristate-13-acetate (PMA)-differentiated THP-1 cells than in THP-1 cells. To determine the difference in cytokine expression, the surface proteins such as TLR4-related proteins and intracellular adaptor proteins were more preserved in PMA-differentiated THP-1 cells than in THP-1 cells. MyD88 is a key molecule responsible for the difference in LPS susceptibility. Moreover, MAPKs and NF-κB pathway-related molecules showed higher levels of phosphorylation in PMA-differentiated THP-1 cells than in THP-1 cells. Upon MyD88 depletion, there was no difference in the phosphorylation of MAPK pathway-related molecules. Therefore, these results demonstrate that the difference in LPS susceptibility between THP-1 cells and PMA-differentiated THP-1 cells occur as a result of gap between the activated MAPKs and NF-κB pathways via changes in the expression of LPS-related receptors and MyD88.


Assuntos
Lipopolissacarídeos , Células THP-1 , Receptor 4 Toll-Like , Citocinas/metabolismo , Humanos , Receptores de Lipopolissacarídeos/metabolismo , Lipopolissacarídeos/farmacologia , Monócitos/efeitos dos fármacos , Monócitos/metabolismo , Fator 88 de Diferenciação Mieloide/metabolismo , NF-kappa B/metabolismo , Células THP-1/efeitos dos fármacos , Células THP-1/metabolismo , Acetato de Tetradecanoilforbol/farmacologia , Receptor 4 Toll-Like/metabolismo
10.
Sci Rep ; 12(1): 8807, 2022 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-35614190

RESUMO

Pinolenic acid (PNLA), an omega-6 polyunsaturated fatty acid from pine nuts, has anti-inflammatory and anti-atherogenic effects. We aimed to investigate the direct anti-inflammatory effect and anti-atherogenic effects of PNLA on activated purified CD14 monocytes from peripheral blood of patients with rheumatoid arthritis (RA) in vitro. Flow cytometry was used to assess the proportions of CD14 monocytes expressing TNF-α, IL-6, IL-1ß, and IL-8 in purified monocytes from patients with RA after lipopolysaccharide (LPS) stimulation with/without PNLA pre-treatment. The whole genomic transcriptome (WGT) profile of PNLA-treated, and LPS-activated monocytes from patients with active RA was investigated by RNA-sequencing. PNLA reduced percentage of monocytes expressing cytokines: TNF-α by 23% (p = 0.048), IL-6 by 25% (p = 0.011), IL-1ß by 23% (p = 0.050), IL-8 by 20% (p = 0.066). Pathway analysis identified upstream activation of peroxisome proliferator-activated receptors (PPARs), sirtuin3, and let7 miRNA, and KLF15, which are anti-inflammatory and antioxidative. In contrast, DAP3, LIF and STAT3, which are involved in TNF-α, and IL-6 signal transduction, were inhibited. Canonical Pathway analysis showed that PNLA inhibited oxidative phosphorylation (p = 9.14E-09) and mitochondrial dysfunction (p = 4.18E-08), while the sirtuin (SIRTs) signalling pathway was activated (p = 8.89E-06) which interfere with the pathophysiological process of atherosclerosis. Many miRNAs were modulated by PNLA suggesting potential post-transcriptional regulation of metabolic and immune response that has not been described previously. Multiple miRNAs target pyruvate dehydrogenase kinase-4 (PDK4), single-immunoglobulin interleukin-1 receptor molecule (SIGIRR), mitochondrially encoded ATP synthase membrane subunit 6 (MT-ATP6) and acetyl-CoA acyltranferase2 (ACAA2); genes implicated in regulation of lipid and cell metabolism, inflammation, and mitochondrial dysfunction. PNLA has potential anti-atherogenic and immune-metabolic effects on monocytes that are pathogenic in RA and atherosclerosis. Dietary PNLA supplementation regulates key miRNAs that are involved in metabolic, mitochondrial, and inflammatory pathways.


Assuntos
Artrite Reumatoide , Aterosclerose , Ácidos Linolênicos , MicroRNAs , Anti-Inflamatórios/metabolismo , Anti-Inflamatórios/farmacologia , Artrite Reumatoide/metabolismo , Aterosclerose/tratamento farmacológico , Aterosclerose/metabolismo , Células Cultivadas , Citocinas/metabolismo , Humanos , Interleucina-6/metabolismo , Interleucina-8/metabolismo , Ácidos Linolênicos/farmacologia , Lipopolissacarídeos/metabolismo , Lipopolissacarídeos/farmacologia , MicroRNAs/metabolismo , Monócitos/efeitos dos fármacos , Monócitos/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
11.
Cell Death Dis ; 13(2): 100, 2022 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-35110525

RESUMO

Acetaminophen (APAP)-induced liver injury (AILI) is the most frequent cause of acute liver failure; but the underlying mechanisms still remain obscure. Macrophages and endoplasmic reticulum (ER) stress play an important role in the pathogenesis of AILI. Mesencephalic astrocyte-derived neurotrophic factor (MANF) is a newly identified 18-kDa soluble protein, whose expression and secretion are stimulated by ER stress. To investigate the role of myeloid cell MANF in the pathogenesis of AILI, we assayed serum and liver samples from AILI model mice and patients with drug-induced liver injury (DILI). We demonstrated that the levels of MANF were elevated in patients with DILI and in mice with AILI. Moreover, myeloid-specific MANF knockout mice were generated and used. It was observed that a delayed liver recovery from myeloid-specific MANF gene knockout mice following APAP overdose compared to that from wild-type mice. MANF deficiency in myeloid cells resulted in increased infiltrating monocyte-derived macrophages (MoMFs) but reduced restorative Ly6Clow macrophages after APAP treatment. MANF supplementation increased restorative Ly6Clow macrophages and subsequently alleviated liver injury. Moreover, MANF could enhance IL-10 expression and phagocytosis in macrophages via p38 MAPK pathway. Altogether, MANF seems to be a critical immune modulator in promoting liver repair via reducing and reprogramming MoMFs. MANF perhaps promoted the phenotype conversion of pro-inflammatory MoMFs to pro-restorative Ly6Clow MoMFs via p38 MAPK pathway, particularly through enhancing IL-10 and phagocytosis.


Assuntos
Acetaminofen/efeitos adversos , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Macrófagos/metabolismo , Fatores de Crescimento Neural/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Animais , Doença Hepática Induzida por Substâncias e Drogas/tratamento farmacológico , Doença Hepática Induzida por Substâncias e Drogas/etiologia , Doença Hepática Induzida por Substâncias e Drogas/patologia , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Humanos , Interleucina-10/metabolismo , Macrófagos/efeitos dos fármacos , Camundongos , Camundongos Knockout , Monócitos/efeitos dos fármacos , Monócitos/metabolismo , Células Mieloides/metabolismo , Fatores de Crescimento Neural/uso terapêutico , Fagocitose , Transdução de Sinais
12.
Fish Shellfish Immunol ; 121: 124-134, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34998984

RESUMO

The protective effect of ß-glucan against toxicological effects caused by copper oxide nanoparticles (Cu NPs) and copper ions (Cu ions) were studied in monocytes/macrophages (MO/MФ) of Nile tilapia (Oreochromis niloticus). Our results demonstrated that CuO NPs and Cu ions exposure aroused strong oxidative lesion in MO/MФ by detection of cellular reactive oxygen species (ROS) and reduced glutathione (GSH), as well as identification of several antioxidant-related cytokines. Meanwhile, the serious pro-inflammatory responses were accompanied during the processes of oxidative lesion by TNFα, IL-1ß, and IL-6 genes validation. Copper induced MO/MФ underwent apoptosis through mitochondrial signaling pathway by mitochondrial membrane potential (ΔΨm) detection and Bax, Bcl-2, Cyt-c, Apaf-1, Caspase 9, Caspase 3 genes validation. Furthermore, the phagocytic abilities were inhibition in MO/MФ by evaluation of microspheres (0.5 and 1.0 µm beads) and bioparticles (S. agalactiae and A. hydrophila) uptake and LPS-induced NO production. However, ß-glucan might participate in immunomodulation through C-type lectin receptor (CLR) and complement receptor 3 (CR3) to suppress pro-inflammatory responses, thereby revered all the copper induced aforementioned adverse effects in MO/MΦ. Taken together, our results provide insights on the mechanisms through ß-glucan administration to mitigate toxicological effects of CuO NPs and Cu ions exposure to the MO/MΦ, which will benefit aspects related to fish farming and aquaculture production.


Assuntos
Ciclídeos , Cobre , Macrófagos/efeitos dos fármacos , Monócitos/efeitos dos fármacos , beta-Glucanas , Animais , Ciclídeos/imunologia , Cobre/toxicidade , beta-Glucanas/uso terapêutico
13.
J Neuroinflammation ; 19(1): 1, 2022 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-34980176

RESUMO

BACKGROUND: Abnormal expression of long noncoding RNAs (lncRNAs) has been reported in the acute stage of acute ischemic stroke (AIS). This study aimed to explore differential lncRNA expression in the subpopulations of peripheral blood mononuclear cells (PBMCs) from AIS patients and further evaluate its underlying mechanisms in stroke-induced immunosuppression. METHODS: We reanalyzed lncRNA microarray data and investigated abnormally expressed lncRNAs in the subpopulations of PBMCs by magnetic cell sorting and real-time quantitative PCR. The potential mechanism of small nucleolar RNA host gene 15 (SNHG15) was explored through in vitro and in vivo approaches. RESULTS: The stroke-induced SNHG15 acted as a checkpoint to inhibit peripheral inflammatory responses. Functional studies showed that SNHG15 promoted M2 macrophage polarization. Mechanistically, SNHG15 expression was dysregulated through the Janus kinase (JAK)-signal transducer and activator of transcription 6 (STAT6) signaling pathway. SNHG15, localized in the cytoplasm, interfered with K63-linked ubiquitination of tumor necrosis factor receptor-associated factor 2 and thereby repressed the activation of mitogen-activated protein kinase and nuclear factor kappa-B signaling pathways and prevented the production of proinflammatory cytokines. Administration of an adenovirus targeting SNHG15 improved stroke-induced immunosuppression in mice. CONCLUSIONS: This study identified SNHG15 as a negative regulator of inflammation in stroke-induced immunosuppression, suggesting it as a novel biomarker and therapeutic target in stroke-associated infection. Trial registration ClinicalTrials.gov NCT04175691. Registered November 25, 2019, https://www.clinicaltrials.gov/ct2/show/NCT04175691 .


Assuntos
Tolerância Imunológica , Inflamação/metabolismo , RNA Longo não Codificante/metabolismo , Acidente Vascular Cerebral/metabolismo , Fator 2 Associado a Receptor de TNF/metabolismo , Citocinas/metabolismo , Humanos , Inflamação/imunologia , Interleucina-4/farmacologia , Lipopolissacarídeos/farmacologia , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Monócitos/efeitos dos fármacos , Monócitos/metabolismo , RNA Longo não Codificante/genética , Acidente Vascular Cerebral/imunologia , Fator 2 Associado a Receptor de TNF/genética , Ubiquitinação
14.
Biochem Biophys Res Commun ; 590: 89-96, 2022 01 29.
Artigo em Inglês | MEDLINE | ID: mdl-34973535

RESUMO

Cholinergic anti-inflammatory pathway (CAP) describes a neuronal-inflammatory reflex centered on systemic cytokine regulation by α7 nicotinic acetylcholine receptor (α7nAChR) activation of spleen-residue macrophage. However, the CAP mechanism attenuating distal tissue inflammation, inducing a low level of systemic inflammation, is lesser known. In this study, we hypothesized that CAP regulates monocyte accessibility by influencing their adhesion to endothelial cells. Using RNA-seq analysis, we identified that α1,3-Fucosyltransferase 7 (FucT-VII), the enzyme required for processing selectin ligands, was significantly downregulated by α7nAChR agonist among other cell-cell adhesion genes. The α7nAChR agonist inhibited monocytic cell line U-937 binding to P-selectin and adhesion to endothelial cells. Furthermore, α7nAChR agonist selectivity was confirmed by α7nAChR knockdown assays, showing that FUT7 inhibition and adhesion attenuation by the agonist was abolished by siRNA targeting α7nAChR encoding gene. Consistently, FUT7 knockdown inhibited the adhesive properties of U-937 and prevented them to adhere to endothelial cells. Overexpression of FUT7 also abrogated the adhesion attenuation induced by GTS-21 indicating that FUT7 inhibition was sufficient for inhibiting adhesion by α7nAChR activation. Our work demonstrated that α7nAChR activation regulates monocyte adhesion to endothelial cells through FUT7 inhibition, providing a novel insight into the CAP mechanism.


Assuntos
Fucosiltransferases/antagonistas & inibidores , Células Endoteliais da Veia Umbilical Humana/citologia , Monócitos/citologia , Receptor Nicotínico de Acetilcolina alfa7/metabolismo , Compostos de Benzilideno/farmacologia , Adesão Celular/efeitos dos fármacos , Adesão Celular/genética , Regulação para Baixo/efeitos dos fármacos , Regulação para Baixo/genética , Fucosiltransferases/metabolismo , Técnicas de Silenciamento de Genes , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Monócitos/efeitos dos fármacos , Monócitos/metabolismo , Piridinas/farmacologia , Células U937 , Receptor Nicotínico de Acetilcolina alfa7/antagonistas & inibidores
15.
EMBO J ; 41(4): e109108, 2022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-35019161

RESUMO

Haploinsufficiency of the progranulin (PGRN)-encoding gene (GRN) causes frontotemporal lobar degeneration (GRN-FTLD) and results in microglial hyperactivation, TREM2 activation, lysosomal dysfunction, and TDP-43 deposition. To understand the contribution of microglial hyperactivation to pathology, we used genetic and pharmacological approaches to suppress TREM2-dependent transition of microglia from a homeostatic to a disease-associated state. Trem2 deficiency in Grn KO mice reduced microglia hyperactivation. To explore antibody-mediated pharmacological modulation of TREM2-dependent microglial states, we identified antagonistic TREM2 antibodies. Treatment of macrophages from GRN-FTLD patients with these antibodies led to reduced TREM2 signaling due to its enhanced shedding. Furthermore, TREM2 antibody-treated PGRN-deficient microglia derived from human-induced pluripotent stem cells showed reduced microglial hyperactivation, TREM2 signaling, and phagocytic activity, but lysosomal dysfunction was not rescued. Similarly, lysosomal dysfunction, lipid dysregulation, and glucose hypometabolism of Grn KO mice were not rescued by TREM2 ablation. Synaptic loss and neurofilament light-chain (NfL) levels, a biomarker for neurodegeneration, were further elevated in the Grn/Trem2 KO cerebrospinal fluid (CSF). These findings suggest that TREM2-dependent microglia hyperactivation in models of GRN deficiency does not promote neurotoxicity, but rather neuroprotection.


Assuntos
Degeneração Lobar Frontotemporal/patologia , Glicoproteínas de Membrana/metabolismo , Microglia/fisiologia , Monócitos/metabolismo , Progranulinas/deficiência , Receptores Imunológicos/metabolismo , Animais , Anticorpos/imunologia , Anticorpos/farmacologia , Encéfalo/diagnóstico por imagem , Encéfalo/fisiopatologia , Modelos Animais de Doenças , Feminino , Degeneração Lobar Frontotemporal/metabolismo , Humanos , Lisossomos/metabolismo , Lisossomos/patologia , Masculino , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/imunologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microglia/efeitos dos fármacos , Monócitos/efeitos dos fármacos , Receptores Imunológicos/genética , Receptores Imunológicos/imunologia , Quinase Syk/metabolismo
16.
J Immunother Cancer ; 10(1)2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-35091454

RESUMO

BACKGROUND: Circulating monocytes are functionally heterogeneous and can be divided into classical (CMo), intermediate (IMo), and non-CMo/patrolling monocyte (PMo) subsets. CMo can differentiate into PMo through IMo. PMos have been shown to inhibit cancer metastasis but the role of IMo is unclear. To date, no strategy has been developed to inhibit cancer metastasis through enhancing PMo/IMo differentiation. METHODS: We screened multiple inflammatory cytokines/chemokines activity of modulating PMo/IMo associated cell markers expression using human monocyte in vitro culture system. We tested our candidate cytokine activity in vivo using multiple mice models. We identified critical key factors and cytokines for our candidate cytokine activity by using gene-knockout mice and neutralization antibodies. RESULTS: We identified IFN-γ as a candidate inflammatory cytokine in the regulation of human IMo/PMo marker expression. Our in vivo data demonstrated that IMo expansion was induced by short-term (3 days) IFN-γ treatment through increasing CMo-IMo differentiation and blocking IMo-PMo differentiation. The IMo induced by IFN-γ (IFN-IMo), but not IFN-γ activated CMo (IFN-CMo), inhibited cancer metastasis by 90%. Surprizing, the effect of IFN-γ is greater in PMo deficiency mice, indicating the effect of IFN-IMo is not mediated through further differentiation into PMo. We also found that IFN-IMos induced by short-term IFN-γ treatment robustly boosted NK cell expansion for threefold and promoted NK differentiation and function through IL-27 and CXCL9. Furthermore, we identified that FOXO1, a key molecule controlling cellular energy metabolism, mediated the effect of IFN-γ induced IL-27 expression, and that NR4A1, a key molecule controlling PMo differentiation and inhibiting cancer metastasis, inhibited the pro-NK cell and anti-metastasis activity of IFN-IMo by suppressing CXCL9 expression. CONCLUSIONS: We have discovered the antimetastasis and pro-NK cell activity of IFN-IMo, identified FOXO1 as a key molecule for IFN-γ driven monocyte differentiation and function, and found NR4A1 as an inhibitory molecule for IFN-IMo activity. Our study has not only shown novel mechanisms for a classical antitumor cytokine but also provided potential target for developing superior monocytic cell therapy against cancer metastasis.


Assuntos
Proteína Forkhead Box O1/fisiologia , Interferon gama/farmacologia , Interleucina-27/fisiologia , Células Matadoras Naturais/imunologia , Ativação Linfocitária , Monócitos/efeitos dos fármacos , Metástase Neoplásica/prevenção & controle , Animais , Diferenciação Celular/efeitos dos fármacos , Células Cultivadas , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Monócitos/fisiologia , Fator de Transcrição STAT1/fisiologia
17.
Commun Biol ; 5(1): 102, 2022 01 28.
Artigo em Inglês | MEDLINE | ID: mdl-35091696

RESUMO

Emerging studies suggest that monocytes can be trained by bacterial endotoxin to adopt distinct memory states ranging from low-grade inflammation to immune exhaustion. While low-grade inflammation may contribute to the pathogenesis of chronic diseases, exhausted monocytes with pathogenic and immune-suppressive characteristics may underlie the pathogenesis of polymicrobial sepsis including COVID-19. However, detailed processes by which the dynamic adaption of monocytes occur remain poorly understood. Here we exposed murine bone-marrow derived monocytes to chronic lipopolysaccharide (LPS) stimulation at low-dose or high-dose, as well as a PBS control. The cells were profiled for genome-wide H3K27ac modification and gene expression. The gene expression of TRAM-deficient and IRAK-M-deficient monocytes with LPS exposure was also analyzed. We discover that low-grade inflammation preferentially utilizes the TRAM-dependent pathway of TLR4 signaling, and induces the expression of interferon response genes. In contrast, high dose LPS uniquely upregulates exhaustion signatures with metabolic and proliferative pathways. The extensive differences in the epigenomic landscape between low-dose and high-dose conditions suggest the importance of epigenetic regulations in driving differential responses. Our data provide potential targets for future mechanistic or therapeutic studies.


Assuntos
Epigenômica , Inflamação/genética , Lipopolissacarídeos/farmacologia , Monócitos/efeitos dos fármacos , Transcriptoma , Animais , COVID-19/virologia , Relação Dose-Resposta a Droga , Inflamação/imunologia , Lipopolissacarídeos/administração & dosagem , Camundongos , SARS-CoV-2/isolamento & purificação
18.
Biomed Pharmacother ; 147: 112653, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35078095

RESUMO

BACKGROUND: Crohn's disease (CD) exacerbation is marked by an intense cellular trafficking. We set out to determine the specific impact of biologic therapies on regulating chemokine network gene expression in healthy, mildly and severely inflamed tissue of CD patients. METHODS: Twenty CD patients on biologics (adalimumab, ustekinumab, vedolizumab) or untreated undergoing colonoscopy due to clinical symptoms of flare. Healthy, mildly and severely inflamed ileum biopsies from each patient were collected. Chemokines and receptors gene expression was analyzed and a STRING analysis for functional enrichment was performed. RESULTS: The chemokine network exhibited wide transcriptional differences among tissues in active untreated patients, whereas all biologic treatments reduced these differences and homogenized their transcriptional activity. In mildly inflamed tissue, all treatments showed gene upregulation while ustekinumab additionally maintained the downregulation of genes such as CCL2, CCL3, CCL17 or CCL23, involved in T cell chemotaxis, inflammatory monocyte and NK trafficking. In severely inflamed tissue, all treatments shared a downregulatory effect on chemokines controlling T cell response (i.e. CXCL16, CXCR3). Adalimumab and vedolizumab significantly reduced the expression of genes promoting antigen presentation by DCs and the initiation of leukocyte extravasation (i.e. CXCL12, CCL25, CCR7). Ustekinumab significantly reduced genes positively regulating Th1 cytokine production and IL-8 mediated signaling (i.e. IL1B, XCL1, CXCR1, CXCR2). CONCLUSION: Biologic therapies differentially target the chemokine network gene expression profile in the ileal tissue of active CD patients. These results may contribute to better understanding cell homing and to defining future personalized therapeutic strategies for CD patients.


Assuntos
Produtos Biológicos/uso terapêutico , Quimiocinas/metabolismo , Doença de Crohn/tratamento farmacológico , Doença de Crohn/patologia , Receptores de Quimiocinas/metabolismo , Adalimumab/farmacologia , Adalimumab/uso terapêutico , Adulto , Anticorpos Monoclonais Humanizados/farmacologia , Anticorpos Monoclonais Humanizados/uso terapêutico , Produtos Biológicos/farmacologia , Quimiotaxia/efeitos dos fármacos , Doença de Crohn/genética , Regulação para Baixo , Feminino , Expressão Gênica , Humanos , Íleo/patologia , Masculino , Pessoa de Meia-Idade , Monócitos/efeitos dos fármacos , Gravidade do Paciente , Estudos Prospectivos , RNA Mensageiro/efeitos dos fármacos , Receptores de Quimiocinas/genética , Ustekinumab/farmacologia , Ustekinumab/uso terapêutico
19.
Biomed Pharmacother ; 146: 112579, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35062054

RESUMO

Low grade inflammation is associated with the progression of atherosclerosis. Patients with type 2 diabetes (T2D) have altered cholesterol levels, which are targeted by free radicals to promote lipid peroxidation. Elevated levels of monocyte-associated cytokines such as interleukin (IL)-6, monocyte chemoattractant protein 1 (MCP-1), nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), and tumor necrosis factor-alpha (TNF-α), subsequently drive endothelial tissue injury. In fact, the levels of circulating platelet-monocyte aggregates in patients with T2D is a robust marker for atherosclerosis and a cardiovascular disease (CVD)-risk factor. To identify eligible studies, we searched the major online databases using PubMed and Google Scholar. The cumulative evidence synthesized in the current review suggests that, traditional therapies which include thiazolidinediones, statins and some calcium channel blockers can be useful in the primary prevention of atherosclerosis by inhibiting the formation of monocyte-derived microparticles, and pro-inflammatory cytokines such as IL-6, TNF-α, MCP-1, and NF-κB in patients with T2D. Future studies are needed to ascertain whether the combination of dietary interventions and glucose or lipid lowering agents can provide an enhanced cardioprotection in patients with T2D.


Assuntos
Anti-Inflamatórios/farmacologia , Doenças Cardiovasculares/prevenção & controle , Diabetes Mellitus Tipo 2/complicações , Hipoglicemiantes/farmacologia , Monócitos/efeitos dos fármacos , Fatores de Risco de Doenças Cardíacas , Humanos , Inflamação/metabolismo
20.
Cells ; 11(2)2022 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-35053324

RESUMO

Raltegravir (RLT) prevents the integration of HIV DNA in the nucleus, but published studies remain controversial, suggesting that it does not decrease proviral DNA. However, there are only a few studies focused on virus-targeted cells. We aimed our study on the impact of RLT inclusion on total intra-cellular viral DNA (TID) in cellular subsets and immune effects in patients with newly acquired undetectable plasmatic viral load (UVL). Six patients having UVL using an antiretroviral combination for 6 months and CD4 T-cells > 350/mL and <500/mL were selected to receive RLT for 3 months from M0 to M3. Patients had 7 sequential viro-immunological determinations from M-1 to M5. Immune phenotypes were determined by flow cytometry and TID quantification was performed using PCR assay on purified cells. TID (median values) at the initiation of RLT in CD4 T-cells was 117 copies/millions of cells, decreased to 27.5 on M3, and remained thereafter permanently under the cut-off (<10 copies/millions of cells) in 4 out of 6 patients. This was associated with an increase of CD4 and CD4 + CD28+ T-cells and a decrease of HLA-DR expression and apoptosis of CD4 T-cells. RLT inclusion led to decreases in the viral load along with positive immune reconstitution, mainly for CD4 T-cells in HIV patients.


Assuntos
Antígenos CD28/metabolismo , Linfócitos T CD4-Positivos/imunologia , Infecções por HIV/tratamento farmacológico , Infecções por HIV/imunologia , Raltegravir Potássico/uso terapêutico , Carga Viral/imunologia , Adulto , Idoso , Apoptose/efeitos dos fármacos , Linfócitos T CD4-Positivos/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , DNA Viral/metabolismo , Feminino , Infecções por HIV/sangue , Infecções por HIV/virologia , Humanos , Cinética , Contagem de Linfócitos , Masculino , Pessoa de Meia-Idade , Monócitos/efeitos dos fármacos , Fenótipo , Raltegravir Potássico/farmacologia , Carga Viral/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...